Non-smoky glycosyltransferase1 prevents the release of smoky aroma from tomato fruit.
نویسندگان
چکیده
Phenylpropanoid volatiles are responsible for the key tomato fruit (Solanum lycopersicum) aroma attribute termed "smoky." Release of these volatiles from their glycosylated precursors, rather than their biosynthesis, is the major determinant of smoky aroma in cultivated tomato. using a combinatorial omics approach, we identified the non-smoky glycosyltransferase1 (NSGT1) gene. Expression of NSGT1 is induced during fruit ripening, and the encoded enzyme converts the cleavable diglycosides of the smoky-related phenylpropanoid volatiles into noncleavable triglycosides, thereby preventing their deglycosylation and release from tomato fruit upon tissue disruption. In an nsgt1/nsgt1 background, further glycosylation of phenylpropanoid volatile diglycosides does not occur, thereby enabling their cleavage and the release of corresponding volatiles. Using reverse genetics approaches, the NSGT1-mediated glycosylation was shown to be the molecular mechanism underlying the major quantitative trait locus for smoky aroma. Sensory trials with transgenic fruits, in which the inactive nsgt1 was complemented with the functional NSGT1, showed a significant and perceivable reduction in smoky aroma. NSGT1 may be used in a precision breeding strategy toward development of tomato fruits with distinct flavor phenotypes.
منابع مشابه
Sensory Characteristics of Various Concentrations of Phenolic Compounds Potentially Associated with Smoked Aroma in Foods.
This research describes the sensory odor characteristics of 19 phenolic compounds (11 phenol derivatives, six guaiacol derivatives, and two syringol derivatives) that have been associated with smoked aroma in previous literature. Seven concentrations varying from 1 to 100,000 ppm of each chemical were examined. A highly trained descriptive panel used a recently published lexicon for smoky aroma...
متن کاملA Solanum lycopersicum catechol-O-methyltransferase involved in synthesis of the flavor molecule guaiacol.
O-methyltransferases (OMT) are important enzymes that are responsible for the synthesis of many small molecules, which include lignin monomers, flavonoids, alkaloids, and aroma compounds. One such compound is guaiacol, a small volatile molecule with a smoky aroma that contributes to tomato flavor. Little information is known about the pathway and regulation of synthesis of guaiacol. One possibl...
متن کاملCharacterization of volatile compounds, physico-chemical and sensory characteristics of smoked dry-cured ham.
Volatile compounds from smoked dry-cured ham were isolated by using headspace-solid phase microextraction and gas chromatography-mass spectrometry (GC-MS). Samples of biceps femoris were also evaluated for sensory physical and chemical characteristics. Eighty seven volatile aroma compounds of smoked dry-cured ham were identified. Chemical groups identified were aldehydes (35.6%), phenols (34.3%...
متن کاملTomato fruits expressing a bacterial feedback-insensitive 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase of the shikimate pathway possess enhanced levels of multiple specialized metabolites and upgraded aroma
Tomato (Solanum lycopersicum) fruit contains significant amounts of bioactive compounds, particularly multiple classes of specialized metabolites. Enhancing the synthesis and accumulation of these substances, specifically in fruits, are central for improving tomato fruit quality (e.g. flavour and aroma) and could aid in elucidate pathways of specialized metabolism. To promote the production of ...
متن کاملRisk of lung cancer associated with domestic use of coal in Xuanwei, China: retrospective cohort study
OBJECTIVE To estimate the risk of lung cancer associated with the use of different types of coal for household cooking and heating. SETTING Xuanwei County, Yunnan Province, China. DESIGN Retrospective cohort study (follow-up 1976-96) comparing mortality from lung cancer between lifelong users of "smoky coal" (bituminous) and "smokeless coal" (anthracite). PARTICIPANTS 27,310 individuals u...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Plant cell
دوره 25 8 شماره
صفحات -
تاریخ انتشار 2013